list1 = [1, 2, 3, 4, 5]
list2 = [11, 12, 13, 14, 15]
list_zip = []
for i in range(len(list1)):
list_zip.append(list1[i])
list_zip.append(list2[i])
list_zip
[1, 11, 2, 12, 3, 13, 4, 14, 5, 15]
Limitations: Only works for lists with the same length
The zip
function does something similar but not exactly the same, note that we need to convert the object that zip
returns back into a list:
list(zip(list1, list2))
[(1, 11), (2, 12), (3, 13), (4, 14), (5, 15)]
list_odd = [ i for i in list1 + list2 if i % 2 != 0 ]
list_odd
[1, 3, 5, 11, 13, 15]
Explanation The + operator concatenates to lists and we can create a list on the fly with a for loop inside the list brackets
list1 + list2
[1, 2, 3, 4, 5, 11, 12, 13, 14, 15]
Let us use the zip
function this time with a double indexed for
loop
list_zip_reverse = []
for i, j in zip(list1[::-1], list2[::-1]):
list_zip_reverse.append(i)
list_zip_reverse.append(j)
list_zip_reverse
[5, 15, 4, 14, 3, 13, 2, 12, 1, 11]
Explanation: Slicing, see numpy section in the notes, can be used for lists as well. To revert a list we do not specify a start nor an end but the step with -1
.
Limitations: The shorter list defines the total length
import numpy as np
x = [1, 2, 3, 5, 7]
X = np.array([1, 2, 3, 5, 7])
Y = np.array([[1.1, 2.1, 3.1], [1.2, 2.2, 3.2]])
v = np.array([1, 2, 3])
Y_sub = Y[:, 1:2]
Y_sub
array([[2.1], [2.2]])
Y
array([[1.1, 2.1, 3.1], [1.2, 2.2, 3.2]])
Y * v
array([[1.1, 4.2, 9.3], [1.2, 4.4, 9.6]])
Y.dot(v)
array([14.6, 15.2])
help(np.arange)
Help on built-in function arange in module numpy: arange(...) arange([start,] stop[, step,], dtype=None, *, like=None) Return evenly spaced values within a given interval. Values are generated within the half-open interval ``[start, stop)`` (in other words, the interval including `start` but excluding `stop`). For integer arguments the function is equivalent to the Python built-in `range` function, but returns an ndarray rather than a list. When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use `numpy.linspace` for these cases. Parameters ---------- start : integer or real, optional Start of interval. The interval includes this value. The default start value is 0. stop : integer or real End of interval. The interval does not include this value, except in some cases where `step` is not an integer and floating point round-off affects the length of `out`. step : integer or real, optional Spacing between values. For any output `out`, this is the distance between two adjacent values, ``out[i+1] - out[i]``. The default step size is 1. If `step` is specified as a position argument, `start` must also be given. dtype : dtype The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. like : array_like Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as ``like`` supports the ``__array_function__`` protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument. .. versionadded:: 1.20.0 Returns ------- arange : ndarray Array of evenly spaced values. For floating point arguments, the length of the result is ``ceil((stop - start)/step)``. Because of floating point overflow, this rule may result in the last element of `out` being greater than `stop`. See Also -------- numpy.linspace : Evenly spaced numbers with careful handling of endpoints. numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions. numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions. Examples -------- >>> np.arange(3) array([0, 1, 2]) >>> np.arange(3.0) array([ 0., 1., 2.]) >>> np.arange(3,7) array([3, 4, 5, 6]) >>> np.arange(3,7,2) array([3, 5])
A = np.reshape(np.arange(20), (4, 5))
It is also possible to apply the reshape
function directly to the array
A = np.arange(20).reshape(4, 5)
A[1, 2]
7
A[0::2, 1::2]
array([[ 1, 3], [11, 13]])
np.random.rand()
0.40957911630332644