References

Brunton, Steven L., and J. Nathan Kutz. 2022. Data-Driven Science and Engineering - Machine Learning, Dynamical Systems, and Control. 2nd ed. Cambridge: Cambridge University Press.
Dempster, Arthur P, Nan M Laird, and Donald B Rubin. 1977. “Maximum Likelihood from Incomplete Data via the EM Algorithm.” Journal of the Royal Statistical Society: Series B (Methodological) 39 (1): 1–22.
Dumoulin, Vincent, and Francesco Visin. 2016. A guide to convolution arithmetic for deep learning.” ArXiv e-Prints, March.
Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.” In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 226–31. KDD’96. Portland, Oregon: AAAI Press.
Fisher, R. A. 1936. “The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics 7 (2): 179–88. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.
Fukushima, Kunihiko. 1980. “Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position.” Biological Cybernetics 36 (4): 193–202. https://doi.org/10.1007/BF00344251.
Geron, Aurelien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow 3e. 3rd ed. Sebastopol, CA: O’Reilly Media.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.
Hubel, D., and T. Wiesel. 1962. “Receptive Fields, Binocular Interaction, and Functional Architecture in the Cat’s Visual Cortex.” Journal of Physiology 160: 106–54.
Huyen, Chip. 2022. Designing Machine Learning Systems. Sebastopol, CA: O’Reilly Media.
Kandolf, Peter. 2025. “MECH-m-DUAL-1-DBM - Grundlagen Datenbasierter Methoden.” Management Center Innsbruck, Course Material. https://doi.org/10.5281/zenodo.14671708.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. “ImageNet Classification with Deep Convolutional Neural Networks.” In Advances in Neural Information Processing Systems, edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger. Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
Landup, David. 2022. Practical Deep Learning for Computer Vision with Python. Independently published.
Lloyd, Stuart P. 1982. “Least Squares Quantization in PCM.” IEEE Trans. Inf. Theory 28 (2): 129–36. https://doi.org/10.1109/TIT.1982.1056489.
Reis, Joe. 2022. Fundamentals of Data Engineering. Sebastopol, CA: O’Reilly Media.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning Representations by Back-Propagating Errors.” Nature 323 (6088): 533–36. https://doi.org/10.1038/323533a0.
Tan, Mingxing, and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.” In Proceedings of the 36th International Conference on Machine Learning, edited by Kamalika Chaudhuri and Ruslan Salakhutdinov, 97:6105–14. Proceedings of Machine Learning Research. PMLR. https://proceedings.mlr.press/v97/tan19a.html.