References
Brunton, Steven L., and J. Nathan Kutz. 2022. Data-Driven Science
and Engineering - Machine Learning, Dynamical Systems, and Control.
2nd ed. Cambridge: Cambridge University Press.
Dempster, Arthur P, Nan M Laird, and Donald B Rubin. 1977.
“Maximum Likelihood from Incomplete Data via the EM
Algorithm.” Journal of the Royal Statistical Society: Series
B (Methodological) 39 (1): 1–22.
Dumoulin, Vincent, and Francesco Visin. 2016. “A guide to convolution arithmetic for deep
learning.” ArXiv e-Prints, March.
Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996.
“A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise.” In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining,
226–31. KDD’96. Portland, Oregon: AAAI Press.
Fisher, R. A. 1936. “The Use of Multiple Measurements in Taxonomic
Problems.” Annals of Eugenics 7 (2): 179–88. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x.
Fukushima, Kunihiko. 1980. “Neocognitron: A Self-Organizing Neural
Network Model for a Mechanism of Pattern Recognition Unaffected by Shift
in Position.” Biological Cybernetics 36 (4): 193–202. https://doi.org/10.1007/BF00344251.
Geron, Aurelien. 2022. Hands-on Machine Learning with Scikit-Learn,
Keras, and TensorFlow 3e. 3rd ed. Sebastopol, CA:
O’Reilly Media.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. MIT Press.
Hubel, D., and T. Wiesel. 1962. “Receptive Fields, Binocular
Interaction, and Functional Architecture in the Cat’s Visual
Cortex.” Journal of Physiology 160: 106–54.
Huyen, Chip. 2022. Designing Machine Learning Systems.
Sebastopol, CA: O’Reilly Media.
Kandolf, Peter. 2025. “MECH-m-DUAL-1-DBM - Grundlagen
Datenbasierter Methoden.” Management Center Innsbruck, Course
Material. https://doi.org/10.5281/zenodo.14671708.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012.
“ImageNet Classification with Deep Convolutional Neural
Networks.” In Advances in Neural Information Processing
Systems, edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q.
Weinberger. Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
Landup, David. 2022. Practical Deep Learning for Computer Vision
with Python. Independently published.
Lloyd, Stuart P. 1982. “Least Squares Quantization in
PCM.” IEEE Trans. Inf. Theory
28 (2): 129–36. https://doi.org/10.1109/TIT.1982.1056489.
Reis, Joe. 2022. Fundamentals of Data Engineering. Sebastopol,
CA: O’Reilly Media.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986.
“Learning Representations by Back-Propagating Errors.”
Nature 323 (6088): 533–36. https://doi.org/10.1038/323533a0.
Tan, Mingxing, and Quoc Le. 2019.
“EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks.” In Proceedings of the
36th International Conference on Machine Learning, edited by
Kamalika Chaudhuri and Ruslan Salakhutdinov, 97:6105–14. Proceedings of
Machine Learning Research. PMLR. https://proceedings.mlr.press/v97/tan19a.html.